Trehalose dimycolate interferes with FcγR-mediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling
نویسندگان
چکیده
The causative agent of tuberculosis, Mycobacterium tuberculosis (M. tuberculosis), contains an abundant cell wall glycolipid and a crucial virulence factor, trehalose-6,6'-dimycolate (TDM). TDM causes delay of phagosome maturation and thus promotes survival of mycobacteria inside host macrophages by a not fully understood mechanism. TDM signals through the Monocyte-INducible C-type LEctin (Mincle), a recently identified pattern recognition receptor. Here we show that recruitment of Mincle by TDM coupled to immunoglobulin (Ig)G-opsonised beads during Fcγ receptor (FcγR)-mediated phagocytosis interferes with phagosome maturation. In addition, modulation of phagosome maturation by TDM requires SH2-domain-containing inositol polyphosphate 5' phosphatase (SHP-1) and the FcγRIIB, which strongly suggests inhibitory downstream signalling of Mincle during phagosome formation. Overall, our study reveals important mechanisms contributing to the virulence of TDM.
منابع مشابه
Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis
The world's most successful intracellular bacterial pathogen, Mycobacterium tuberculosis (MTB), survives inside macrophages by blocking phagosome maturation and establishes chronic infection characterized by the formation of granulomas. Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is the most abundant cell wall lipid of virulent mycobacteria, is sufficient to cause granuloma f...
متن کاملDelay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide.
Mycobacterium tuberculosis is a facultative intracellular pathogen that inhibits phagosome maturation in macrophages thereby securing survival and growth. Mycobacteria reside in an early endocytic compartment of near-neutral pH where they upregulate production of complex glycolipids such as trehalose dimycolate. Here, we report that trehalose dimycolate coated onto beads increased the bead rete...
متن کاملDefining the conformation of human mincle that interacts with mycobacterial trehalose dimycolate
Trehalose dimycolate, an unusual glycolipid in the outer membrane of Mycobacterium tuberculosis, stimulates macrophages by binding to the macrophage receptor mincle. This stimulation plays an important role both in infection by mycobacteria and in the use of derivatives of mycobacteria as adjuvants to enhance the immune response. The mechanism of trehalose dimycolate binding to the C-type carbo...
متن کاملThe Mincle-Activating Adjuvant TDB Induces MyD88-Dependent Th1 and Th17 Responses through IL-1R Signaling
Successful vaccination against intracellular pathogens requires the generation of cellular immune responses. Trehalose-6,6-dibehenate (TDB), the synthetic analog of the mycobacterial cord factor trehalose-6,6-dimycolate (TDM), is a potent adjuvant inducing strong Th1 and Th17 immune responses. We previously identified the C-type lectin Mincle as receptor for these glycolipids that triggers the ...
متن کاملAssociation of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk
Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6'-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017